Y=sin(x+兀/6)cos(兀/3-x)的最小正周期怎么算啊
问题描述:
Y=sin(x+兀/6)cos(兀/3-x)的最小正周期怎么算啊
答
Y
=sin(x+兀/6)cos(兀/3-x)
=sin(x+π/6)sin(x+π/6)
=1/2(1-cos(2x+π/3))
最小正周期=2π/2=π
答
Y=sin(x+兀/6)cos(兀/3-x)
=sin(x+π/6)sin(π/6+x)
=sin²(x+π/6)
=[1-cos(2x+π/3)]/2
=(1/2)cos(2x+π/3)-1/2
所以
最小正周期为 2π/2=π
答
Y=sin(x+兀/6)cos(兀/3-x)
=sin(x+兀/6)cos(x+兀/6)
=1/2sin(2x+π/3)
所以最小正周期2π/2=π
答
Y=sin(x+兀/6)sin(兀/6+x)
=sin(x+兀/6)的平方
=[ 1-cos(2x+兀/3) ]/2
最小正周期=2兀/2=兀