函数y=sinx+3cosx+2cos2x+3sin2x的值域为 ___ .

问题描述:

函数y=sinx+

3
cosx+2cos2x+
3
sin2x的值域为 ___ .

y=sinx+

3
cosx+2cos2x+
3
sin2x
=2sin(x+
π
3
)+1+cos2x+
3
sin
2x
=2sin(x+
π
3
)-2cos(2x+
3
)+1
=2sin(x+
π
3
)-2(1-2sin2(x+
π
3
)+1
=4sin2(x+
π
3
)+2sin(x+
π
3
)-1
令t=sin(x+
π
3
),
∵sin(x+
π
3
)∈[-1,1]
∴t∈[-1,1]
∴y=4t2+2t-1,t∈[-1,1]
当t=-
1
4
时,ymin=-
5
4

当t=1时,ymax=5.
所以函数的值域为[-
5
4
,5].
故答案为:[-
5
4
,5].
答案解析:先利用两角和与差的公式进行化简,然后通过换元转化成二次函数求值域.
考试点:三角函数中的恒等变换应用.

知识点:本题考查了三角变换及三角函数的值域,解题的关键是选择恰当的公式对表达式进行变形;考查转化思想,把较复杂的函数通过换元转化成简单的二次函数,要注意函数的定义域.