过曲线y=(x+4)/(4-x)上一点(2,3)的切线斜率是?
问题描述:
过曲线y=(x+4)/(4-x)上一点(2,3)的切线斜率是?
答
求导得
y'=(4-x-(-(x+4)))/(4-x)^2=8/(4-x)^2
y'|x=2 =8/4=2,
即此处切线斜率为2.
所以 C 答案准确
答
y'=[(x+4)'*(4-x)-(x+4)*(4-x)']/(4-x)²
=(4-x+x+4)/(4-x)²
=8/(4-x)²
x=2,切线斜率k=y'=2
所以是2x-y-1=0