如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由.
问题描述:
如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是弧APB上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.
(1)求弦AB的长;
(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由.
答
知识点:考查了圆的综合题.本题巧妙将垂径定理、勾股定理、内切圆等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题.
(1)连接OA.设OP与AB的交点为F.∵⊙O的半径为1(已知),∴OA=1.∵弦AB垂直平分线段OP,∴OF=12OP=12,AF=BF(垂径定理),在Rt△OAF中,AF=OA2−OF2=12−(12)2=32(勾股定理),∴AB=2AF=3.(2)∠ACB是定值....
答案解析:(1)连接OA.设OP与AB的交点为F,则△OAF为直角三角形,且OA=1,OF=
,借助勾股定理可求得AF的长;1 2
(2)要判断∠ACB是否为定值,只需判定∠CAB+∠ABC的值是否是定值,由于⊙D是△ABC的内切圆,所以AD和BD分别为∠CAB和∠ABC的角平分线,因此只要∠DAE+∠DBA是定值,那么CAB+∠ABC就是定值,而∠DAE+∠DBA等于弧AB所对的圆周角,这个值等于∠AOB值的一半;
考试点:圆的综合题.
知识点:考查了圆的综合题.本题巧妙将垂径定理、勾股定理、内切圆等知识综合在一起,需要考生从前往后按顺序解题,前面问题为后面问题的解决提供思路,是一道难度较大的综合题.