已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根,求ab2(a−2)2+b2−4的值.

问题描述:

已知关于x的一元二次方程ax2+bx+1=0(a≠0)有两个相等的实数根,求

ab2
(a−2)2+b2−4
的值.

∵ax2+bx+1=0(a≠0)有两个相等的实数根,
∴△=b2-4ac=0,
即b2-4a=0,
b2=4a,

ab2
(a−2)2+b2−4
=
ab2
a2−4a+4+b2−4
=
ab2
a2−4a+b2
=
ab2
a2

∵a≠0,
ab2
a2
=
b2
a
=
4a
a
=4.