数列An的前n项和Sn,A(1)=1,A(n+1)=(n+2)Sn/n,证明1.Sn/n是等差数列 2.S(n+1)=4An
问题描述:
数列An的前n项和Sn,A(1)=1,A(n+1)=(n+2)Sn/n,证明1.Sn/n是等差数列 2.S(n+1)=4An
答
A(n+1)=(n+2)Sn/n因为S(n+1)-Sn=an所以S(n+1)-Sn=(n+2)Sn/nn*S(n+1)-n*Sn=(n+2)*Snn*S(n+1)=2*(n+1)Sn所以S(n+1)/(n+1)=2*Sn/n又a1=1所以S1/1=1所以{Sn/n}是首项为1,公比为2的等比数列Sn/n=2^(n-1)Sn=n*2^(n-1)...