空间四边形O-ABC中,OA=OB,CA=CB,点E,F,G,H分别是OB,OA,BC,CA的中点,求证:四边形EFGH是矩形
问题描述:
空间四边形O-ABC中,OA=OB,CA=CB,点E,F,G,H分别是OB,OA,BC,CA的中点,求证:四边形EFGH是矩形
答
画图,易得EF‖AB,且EF=1/2AB.HG‖AB,且HG=1/2AB
所以四边形EFGH是平行四边形
△ACO≌△BCO,(三边相等).所以OC平分角AOB
在等腰三角形ABO中,OC垂直平分AB,
且EF‖AB,EH‖OC.所以EF⊥EH,所以四边形EFGH是矩形