已知实数M,N满足M的平方-4M-1=0,N的平方-4N-1=0,则M/N+N/M=
问题描述:
已知实数M,N满足M的平方-4M-1=0,N的平方-4N-1=0,则M/N+N/M=
答
M、N是方程x²-4x-1=0的两根,则M+N=4,MN=-1
则:
(M/N)+(N/M)
=[M²+N²]/(MN)
=-(M²+N²)
=-[(M+N)²-2MN]
=-[16+2]
=-18m²-4m-1=0且n²-4n-1=0两式相减,得:(m²-n²)-4(m-n)=0(m-n)(m+n-4)=01、若m=n,则m/n+n/m=22、若m≠n,则m+n=4因(m²-4m-1)+(n²-4n-1)=0(m²+n²)-4(m+n)-2=0m²+n²=18(m+n)²=m²+2mn+n²16=18+2mn则:mn=-1则:m/n+n/m=[m²+n²]/(mn)=-18