设F是抛物线G:x2=4y的焦点. (Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程; (Ⅱ)过抛物线G的焦点F,作两条互相垂直的直线,分别交抛物线于A,C,B,D点,求四边形ABCD面积的最小值.

问题描述:

设F是抛物线G:x2=4y的焦点.
(Ⅰ)过点P(0,-4)作抛物线G的切线,求切线方程;
(Ⅱ)过抛物线G的焦点F,作两条互相垂直的直线,分别交抛物线于A,C,B,D点,求四边形ABCD面积的最小值.

(I)由题设切线y=kx-4(k显然存在)
又x2=4y联立得x2-4kx+16=0
∴△=0即16k2-4×16=0,解得k=±2
∴切线方程为y=±2x-4
(II)由题意,直线AC斜率存在,又对称性,不妨k>0
∴AC:y=kx+1∴x2-4kx-4=0
又x2=4y
∴x1+x2=4kx1•x2=-4
|AC|=

1+k2
(x1+x2)2−4x1x2
=4(1+k2
同理|BD|=4[1+(−
1
k
)2]=
4(1+k2)
k2

SABCD
1
2
|AC|•|BD|=
8(1+k2)2
k2
=8(k2+2+
1
k2
)≥32

当k=1时,“=”成立,∴Smin=32