在四面体ABCD中,设AB=1,CD=2且AB⊥CD,若异面直线AB与CD间的距离为2,则四面体ABCD的体积为( ) A.13 B.12 C.23 D.43
问题描述:
在四面体ABCD中,设AB=1,CD=2且AB⊥CD,若异面直线AB与CD间的距离为2,则四面体ABCD的体积为( )
A.
1 3
B.
1 2
C.
2 3
D.
4 3
答
∵AB垂直于CD,
∴可以做一包含AB的平面α,
使平面α与线段CD垂直.
这样α将四面体剖成两个小的四面体.
将截面视为底,CD视为两个四面体高的总和,
那么两个小四面体的体积之和即为四面体ABCD的体积:
V=
×(1 3
×2×1)×2=1 2
2 3
故选C