证明:(cosα-cosβ)²+(sinα-sinβ)²=2-2(cosαcosβ+sinαsinβ)

问题描述:

证明:(cosα-cosβ)²+(sinα-sinβ)²=2-2(cosαcosβ+sinαsinβ)

左式=(cosα-cosβ)²+(sinα-sinβ)²
= (cosα)² + (cosβ)² - 2cosαcosβ + (sinα)² + (sinβ)² - 2 sinαsinβ
= [(cosα)²+(sinα)²] + [ (cosβ)²+ (sinβ)²] - 2 ( cosαcosβ + sinαsinβ )
= 1+1- 2 ( cosαcosβ + sinαsinβ )
= 2-2(cosαcosβ+sinαsinβ)
= 右式
所以等式成立.
希望能够帮到你,觉得好的话请采纳!