椭圆x^2/a^2+y^2/b^2=1(a>b>0)与直线x+y-1=0相交于PQ两点,且向量OP⊥向量OQ,O为坐标原点

问题描述:

椭圆x^2/a^2+y^2/b^2=1(a>b>0)与直线x+y-1=0相交于PQ两点,且向量OP⊥向量OQ,O为坐标原点
求证:1/a^2+1/b^2等于定值
当椭圆的离心率e∈[根3/2,根2/2],求椭圆长轴长的取值范围

把x+y=1代入x^2/a^2+y^2/b^2=1
(a^2+b^2)x^2-2a^2x+a^2-b^2=0
X1+X2=2a^2/(a^2+b^2) X1X2=a^2(1-b^2)/a^2+b^2
OP.OQ=0=>X1X2+Y1Y2=0=>2a^2b^2=a^2+b^2
1/a^2+1/b^2=a^2+b^2/a^2b^2=2
(2)若椭圆离心率e∈[(√3)/3,(√3)/2],求椭圆长轴的取值范围.
既然第一问已经完成,那么:
由(1)的结论有:a^2+b^2=2a^2b^2
===> a^2+(a^2-c^2)=2a^2(a^2-c^2)
===> 2a^4-2a^2c^2-2a^2+c^2=0
===> 2a^2-2c^2-2+(c^2/a^2)=0(因为a>0,两边同除以a^2)
===> 2a^2-2c^2-2+e^2=0
因为:e=c/a,所以:c=ea
===> 2a^2-2(ea)^2-2+e^2=0
===> 2a^2-2e^2a^2=2-e^2
===> 2(1-e^2)a^2=2-e^2
===> 2a^2=(2-e^2)/(1-e^2)
===> 2a^2=[(1-e^2)+1]/(1-e^2)=1+[1/(1-e^2)]…………(1)
令f(e)=1/(1-e^2)
===> f'(e)=[0-1*(-2e)]/(1-e^2)^2=2e/(1-e^2)^2>0
所以,f(e)为增函数
因为e∈[(√3)/3,(√3)/2],所以:f(√3/3)≤f(e)≤f(√3/2)
即,3/2≤f(e)≤4
代入(1)式,就有:
===> (3/2)+1=(5/2)≤2a^2≤1+4=5
===> (5/4)≤a^2≤(5/2)
===> (√5)/2≤a≤(√10)/2
椭圆的长轴为2a,所以:
√5≤2a≤√10