求球面x^2+y^2+z^2=6上某点的切平面方程,使之过已知直线L:(x-2)/(-1)=(y-1)/1=(z-2)/(-1)
问题描述:
求球面x^2+y^2+z^2=6上某点的切平面方程,使之过已知直线L:(x-2)/(-1)=(y-1)/1=(z-2)/(-1)
答
设直线L的平行线:(2-x)=(y-1)=(2-z)=k,代入球方程有:(2-k)²+(1+k)²+(2-k)²=6,化简得:k²-2k+1=0,Δ=0,k=1;也就是说直线L本身就是球的切线.现在,可以找出L在点(1,2,1)的垂线方程l,且l与球也有...