如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.
问题描述:
如图,分别以△ABC的边AC、BC为一边,在△ABC外作正方形ACDE和CBFG,点P是EF的中点,求证:点P到AB的距离是AB的一半.
答
分别过E,F,C,P作AB的垂线,垂足依次为R,S,T,Q,则ER∥PQ∥FS,
∵P是EF的中点,∴Q为RS的中点,
∴PQ为梯形EFSR的中位线,
∴PQ=
(ER+FS),1 2
∵AE=AC(正方形的边长相等),∠AER=∠CAT(同角的余角相等),∠R=∠ATC=90°,
∴Rt△AER≌Rt△CAT(AAS),
同理Rt△BFS≌Rt△CBT,
∴ER=AT,FS=BT,
∴ER+FS=AT+BT=AB,
∴PQ=
AB.1 2