已知f(x)是实数集R上的函数,且对任意x∈R,f(x)=f(x+1)+f(x-1)恒成立. (1)求证:f(x)是周期函数; (2)已知f(3)=2,求f(2 004).

问题描述:

已知f(x)是实数集R上的函数,且对任意x∈R,f(x)=f(x+1)+f(x-1)恒成立.
(1)求证:f(x)是周期函数;
(2)已知f(3)=2,求f(2 004).

(1)证明∵f(x)=f(x+1)+f(x-1)∴f(x+1)=f(x)-f(x-1),则f(x+2)=f[(x+1)+1]=f(x+1)-f(x)=f(x)-f(x-1)-f(x)=-f(x-1).∴f(x+3)=f[(x+1)+2]=-f[(x+1)-1]=-f(x).∴f(x+6)=f[(x...