在三角形ABC中,∠A,∠B,∠C所对的边长分别为a,b,c,其外接圆的半径R=5636,则(a2+b2+c2)(1/sin2A+1/sin2B+1/sin2C)的最小值为 _.
问题描述:
在三角形ABC中,∠A,∠B,∠C所对的边长分别为a,b,c,其外接圆的半径R=
,则(a2+b2+c2)(5
6
36
+1
sin2A
+1
sin2B
)的最小值为 ______. 1
sin2C
答
由正弦定理可知
=a sinA
=b sinB
=2Rc sinC
∴sinA=
,sinB=a 2R
,sinC=b 2R
c 2R
∴(a2+b2+c2)(
+1
sin2A
+1
sin2B
)1
sin2C
=4R2(a2+b2+c2)(
+1 a2
+1 b2
)1 c2
=4R2(3+
+a2 b2
+b2 a2
+a2 c2
+c2 a2
+c2 b2
)≥4R2(3+2+2+2)=b2 c2
(当且仅当a=b=c时等号成立).25 6
故答案为:
25 6