不定积分啊!设F(x)=∫ sin x/(asinx+bcosx) dx G(x)=∫ cosx/(asinx+bcosx) dx. 求aF(x)+bG(x)

问题描述:

不定积分啊!设F(x)=∫ sin x/(asinx+bcosx) dx G(x)=∫ cosx/(asinx+bcosx) dx. 求aF(x)+bG(x)
求aF(x)+bG(x);aG(x)-bF(x);F(x);G(x)

aF(x)+bG(x)=∫ (asinx+bcosx)/(asinx+bcosx) dx
=∫ 1 dx
=x + C1 (1)
aG(x)-bF(x)=∫ (acosx-bsinx)/(asinx+bcosx) dx
=∫ 1/(asinx+bcosx) d(asinx+bcosx)
=ln|asinx+bcosx| + C2 (2)
b×(1)+a×(2)得:
(a²+b²)G(x)=bx + aln|asinx+bcosx| + bC1 + aC2
得:G(x)=[bx + aln|asinx+bcosx|]/(a²+b²) + C3
a×(1)-b×(2)得:
(a²+b²)F(x)=ax - bln|asinx+bcosx| + bC1 + aC2
得:F(x)=[ax - bln|asinx+bcosx|]/(a²+b²) + C4
若有不懂请追问,如果解决问题请点下面的“选为满意答案”.