第一题 (x-1)/(x^2/3+x^1/3+1)+(x+1)/(x^1/3+1)-(x-x^1/3)/(x^1/3-1)

问题描述:

第一题 (x-1)/(x^2/3+x^1/3+1)+(x+1)/(x^1/3+1)-(x-x^1/3)/(x^1/3-1)
第二题 √(9+4√(4+2√3))

第二题√(9+4√(4+2√3))
=√(9+4√(3+2√3+1))
=√(9+4√3+4)
=√ √12^2+2√12+1
=√12+1
=2√3+1
第一题 (x-1)/(x^2/3+x^1/3+1)=(x^1/3)^3-1/(x^2/3+x^1/3+1)=x^1/3-1 又(x+1)/(x^1/3+1)=x^2/3-x^1/3+1
(x-x^1/3)/(x^1/3-1)
=x^1/3(x^1/3+1)
原式=-x^1/3