已知x:y:z=1:2:3 求分式(x^2+y^2+z^2)/(xy-2yz+3xz)的值
问题描述:
已知x:y:z=1:2:3 求分式(x^2+y^2+z^2)/(xy-2yz+3xz)的值
答
由题可知:
y=2x,
z=3x
故:
(x^2+y^2+z^2)/(xy-2yz+3xz)
=(x^2+4x^2+9x^2)/(x*2x-2*2x*3x+3x*3x)
=14x^2/(2x^2-12x^2+9x^2)
=-14x^2/x^2
=-14