用放缩法证明1/2-1/(n+1)
问题描述:
用放缩法证明1/2-1/(n+1)
数学人气:211 ℃时间:2020-06-11 07:19:55
优质解答
1/2^2+1/3^2+.+1/n^2>1/(2*3)+1/(3*4)+...+1/[n*(n+1)]
1/(2*3)+1/(3*4)+...+1/[n*(n+1)]
=1/2-1/3+1/3-1/4+...+1/n-1/(n+1)
=1/2-1/(n+1)
1/2^2+1/3^2+.+1/n^2
1/(2*3)+1/(3*4)+...+1/[n*(n+1)]
=1/2-1/3+1/3-1/4+...+1/n-1/(n+1)
=1/2-1/(n+1)
1/2^2+1/3^2+.+1/n^2
我来回答
类似推荐
答
1/2^2+1/3^2+.+1/n^2>1/(2*3)+1/(3*4)+...+1/[n*(n+1)]
1/(2*3)+1/(3*4)+...+1/[n*(n+1)]
=1/2-1/3+1/3-1/4+...+1/n-1/(n+1)
=1/2-1/(n+1)
1/2^2+1/3^2+.+1/n^2