设F(u,v)是可微函数,而方程F(x+z/y,y+z/x)=0,确定的函数z=(x,y) 证明x*(αz/αx)+y*(αZ/αy)=z-xy α为偏导
问题描述:
设F(u,v)是可微函数,而方程F(x+z/y,y+z/x)=0,确定的函数z=(x,y) 证明x*(αz/αx)+y*(αZ/αy)=z-xy α为偏导
答
设F关于u和v的偏导函数分别记为f'1,f'2,下记f'1(x+z/y)=a,f'2(y+z/x)=b(a和b都是关于x,y,z的表达式)则由F(x+z/y,y+z/x)=0由复合函数偏导法则αF/αx=a -bz/(x^2)αF/αy= - az/(y^2)+bαF/αz=a/y+b/x所以x*(αz/...