已知函数f(x)=ax3+bx+1的图象经过点(1,-1),且在x=1处f(x)取得极值, 求(1)函数f(x)解析式; (2)f(x)的单调递增区间.
问题描述:
已知函数f(x)=ax3+bx+1的图象经过点(1,-1),且在x=1处f(x)取得极值,
求(1)函数f(x)解析式;
(2)f(x)的单调递增区间.
答
(1)由函数f(x)=ax3+bx+1的图象经过点(1,-1),得a+b=-2…(1分)
f'(x)=3ax2+b …(3分)
又 f'(1)=3a+b=0…(5分)
解方程
,得
a+b=−2 3a+b=0
a=1 b=−3
故 f(x)=x3-3x+1 …(7分)
(2)由(1)知f'(x)=3x2-3,由f'(x)>0 …(9分)
解得x>1或x<-1…(11分)
所以f(x)的单调递增区间为(-∞,-1),(1,+∞),…(12分)