设f(x)在[0,1]上连续,且单调不增,证明∫(α,0)f(x)dx>=α∫(1,0)f(x)dx (0
问题描述:
设f(x)在[0,1]上连续,且单调不增,证明∫(α,0)f(x)dx>=α∫(1,0)f(x)dx (0
求详解
答
证明:记F(α) = ∫(α,0)f(x)dx - α∫(1,0)f(x)dx则 F'(α) = f(α) - ∫(1,0)f(x)dx从而F'(α)单调不增,又 F'(0) = f(0) - ∫(1,0)f(x)dx ≥ f(0) - ∫(1,0)f(0)dx = 0F'(1) ≤ 0因此F'(α)先大于0,然后小于0;也...