已知α,β∈(3π4,π),sin(α+β)=−35,sin(β−π4)=1213,则cos(α+π4)=______.
问题描述:
已知α,β∈(
,π),sin(α+β)=−3π 4
,sin(β−3 5
)=π 4
,则cos(α+12 13
)=______. π 4
答
已知α,β∈(
,π),sin(α+β)=−3π 4
,3 5
sin(β−
)=π 4
,α+β∈(12 13
,2π),β−3π 2
∈(π 4
,π 2
),3π 4
∴cos(α+β)=
,cos(β−4 5
)=−π 4
,5 13
∴cos(α+
)=cos[(α+β)−(β−π 4
)]π 4
=cos(α+β)cos(β−
)+sin(α+β)sin(β−π 4
)π 4
=
•(−4 5
)+(−5 13
)•3 5
=−12 13
56 65
故答案为:-
56 65
答案解析:α+
=(α+β)-(β-π 4
),进而通过正弦函数的两角和公式得出答案.π 4
考试点:两角和与差的正弦函数;两角和与差的余弦函数.
知识点:本题主要考查正弦函数两角和公式的运用.注意熟练掌握公式.