已知椭圆的方程为x^2/3+y^2/4=1及支线l=1/4x+m,试确定m的取值范围,椭圆上有不同的两点关于该直线对称
问题描述:
已知椭圆的方程为x^2/3+y^2/4=1及支线l=1/4x+m,试确定m的取值范围,椭圆上有不同的两点关于该直线对称
用两种方法
答
设已知椭圆上的两点A(x1,y1),B(x2,y2)关于该直线对称,设AB所在直线方程为y=-4x+n,代入圆锥曲线方程,得到关于x的一元二次方程,写出判别式,x1+x2,再用x1+x2表示出yi+y2,写出中点坐标公式,带入对称轴,得一个关系式,再把这个关系式代入判别式.