有一边长为2的正方形纸片ABCD,先将正方形ABCD对折,设折痕为EF(如图①);再沿过点D的折痕将角A翻折,使得点A落在EF的H上(如图②),折痕交AE于点G,则EG的长度为( ) A.43-6 B.23-3 C.8
问题描述:
有一边长为2的正方形纸片ABCD,先将正方形ABCD对折,设折痕为EF(如图①);再沿过点D的折痕将角A翻折,使得点A落在EF的H上(如图②),折痕交AE于点G,则EG的长度为( )
A. 4
-6
3
B. 2
-3
3
C. 8-4
3
D. 4-2
3
答
本题可通过用EG表示EH,然后通过EF的长来求EG.∵∠GHD=90°∴∠EHG+∠DHF=90°∵∠EGH+∠EHG=90°∴∠EGH=∠DHFRt△HDF中,HD=2,DF=1根据勾股定理可得出:FH=HD2−DF2=3sin∠DHF=DF:DH=1:2,因此∠DHF=30°Rt△E...