有一边长为2的正方形纸片ABCD,先将正方形ABCD对折,设折痕为EF(如图①);再沿过点D的折痕将角A翻折,使得点A落在EF的H上(如图②),折痕交AE于点G,则EG的长度为(  ) A.43-6 B.23-3 C.8

问题描述:

有一边长为2的正方形纸片ABCD,先将正方形ABCD对折,设折痕为EF(如图①);再沿过点D的折痕将角A翻折,使得点A落在EF的H上(如图②),折痕交AE于点G,则EG的长度为(  )
A. 4

3
-6
B. 2
3
-3
C. 8-4
3

D. 4-2
3

本题可通过用EG表示EH,然后通过EF的长来求EG.
∵∠GHD=90°
∴∠EHG+∠DHF=90°
∵∠EGH+∠EHG=90°
∴∠EGH=∠DHF
Rt△HDF中,HD=2,DF=1
根据勾股定理可得出:FH=

HD2DF2
=
3

sin∠DHF=DF:DH=1:2,因此∠DHF=30°
Rt△EGH中,设EG=x,EH=EG•tan∠EGH=x•tan30°=
3
3
x

因为EF=EH+HF=
3
+
3
3
x
=2,x=2
3
-3,故选B.