已知a、b、c∈R+,求证:a^12/bc+b^12/ca+c^12/ab>=a^10+b^10+c^10,用排序不等式解答
问题描述:
已知a、b、c∈R+,求证:a^12/bc+b^12/ca+c^12/ab>=a^10+b^10+c^10,用排序不等式解答
答
不妨设a>=b>=c,所以(a^12/bc+b^12/ca+c^12/ab)=(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab),然后由排序不等式得(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab)>=1/3*(a^10+b^10+c^10)*(a^2/bc+b^2/ac+c^2/ab)
而(a^2/bc+b^2/ac+c^2/ab)由均值不等式得>=3,
所以(a^12/bc+b^12/ca+c^12/ab)=(a^10*a^2/bc+b^10*b^2/ac+c^10*c^2/ab)>=1/3*(a^10+b^10+c^10)*(a^2/bc+b^2/ac+c^2/ab)>=a^10+b^10+c^10
得证