设A,B是直线3x+4y+2=0与圆x2+y2+4y=0的两个交点,则线段AB的垂直平分线的方程是
问题描述:
设A,B是直线3x+4y+2=0与圆x2+y2+4y=0的两个交点,则线段AB的垂直平分线的方程是
答
圆x2+y2+4y=0
x^2+(y-2)^2=4
故圆心(0,2)
直线的斜率为-3/4,其垂直平分线斜率为4/3
故垂直平分线方程为
y-2=k(x-0)
即4/3x-y+2=0
即4x-3y+6=0