设A 为实对称矩阵,λ1≠λ2为其特征值,α,β为对应的特征向量,则关于未知数x的方程λ1α+xβ=0的解为=?

问题描述:

设A 为实对称矩阵,λ1≠λ2为其特征值,α,β为对应的特征向量,则关于未知数x的方程λ1α+xβ=0的解为=?

属于实对称矩阵的不同特征值的特征向量正交
所以用β对等式两边做内积得 x(β,β)=0
由于特征向量β≠0
所以 x = 0