已知点A(0,1)和圆x2+y2=4上一动点P,动点M满足MA=2AP,则点M的轨迹方程是(  ) A.(x-3)2+y2=16 B.x2+(y-3)2=16 C.(x+3)2+y2=16 D.x2+(y+3)2=16

问题描述:

已知点A(0,1)和圆x2+y2=4上一动点P,动点M满足

MA
=2
AP
,则点M的轨迹方程是(  )
A. (x-3)2+y2=16
B. x2+(y-3)2=16
C. (x+3)2+y2=16
D. x2+(y+3)2=16

设点M的坐标为(x,y),点P(m,n),则m2+n2=4  ①.
∵动点M满足

MA
=2
AP

∴(-x,1-y)=2(m,n-1)
∴-x=2m,1-y=2n-2
m=−
x
2
,n=
3
2
y
2

x2
4
+
(y−3)2
4
=4

∴x2+(y-3)2=16
故选B.