一道高一向量题(超简单)
问题描述:
一道高一向量题(超简单)
已知矩形ABCD中,向量AD的模等于4√3,设向量AB=a,向量BC=b,向量BD=c,求(a+b+c)的模等于多少
答
|a+b+c|=|AB+BC+BD|=|BC+DC+BD|=|BC+BC|=2|BC|=2|AD|=8√3
一道高一向量题(超简单)
已知矩形ABCD中,向量AD的模等于4√3,设向量AB=a,向量BC=b,向量BD=c,求(a+b+c)的模等于多少
|a+b+c|=|AB+BC+BD|=|BC+DC+BD|=|BC+BC|=2|BC|=2|AD|=8√3