求二重积分∫∫dxdy,积分区域为2x≤x²+y²≤4
问题描述:
求二重积分∫∫dxdy,积分区域为2x≤x²+y²≤4
答
D:圆 (x-1)^2+y^2=1之外,圆 x^2+y^2=4之内.
根据二重积分的性质
∫∫dxdy=S= π(2^2-1^1)=3π.