高中导数公式,求

问题描述:

高中导数公式,求

① C'=0(C为常数函数)
  ② (x^n)'= nx^(n-1) (n∈Q*);熟记1/X的导数
  ③ (sinx)' = cosx
  (cosx)' = - sinx
(e^x)' = e^x
  (a^x)' = (a^x)lna (ln为自然对数)
  (Inx)' = 1/x(ln为自然对数)
  (logax)' =x^(-1) /lna(a>0且a不等于1)
  (x^1/2)'=[2(x^1/2)]^(-1)
  (1/x)'=-x^(-2)

导数的四则运算法则(和、差、积、商):
  ①(u±v)'=u'±v'
  ②(uv)'=u'v+uv'
  ③(u/v)'=(u'v-uv')/ v^2