f(x)为三次函数,f(2004)=1 f(2005)=2 f(2006)=7求 f(2008)

问题描述:

f(x)为三次函数,f(2004)=1 f(2005)=2 f(2006)=7求 f(2008)

记f(x)=(x-a)(x-b)(x-c)
则f(2004)=(2004-a)(2004-b)(2004-c),我们记2004-a=m,2004-b=n,2004-c=p
则f(2004)=m*n*p=1
f(2005)=(m+1)*(n+1)*(p+1)=m*n*p+(m*n+m*p+n*p)+(m+n+p)+1=2
有(m*n+m*p+n*p)+(m+n+p)=0
f(2006)=(m+2)*(n+2)*(p+2)=m*n*p+2(m*n+m*p+n*p)+4(m+n+p)+8=7
有2(m*n+m*p+n*p)+4(m+n+p)=-2
则有(m*n+m*p+n*p)=1
(m+n+p)=-1
则f(2008)=(m+4)*(n+4)*(p+4)=m*n*p+4(m*n+m*p+n*p)+16(m+n+p)+64=53
故f(2008)=53