1+tanα/1-tanα=3+2√2,求(sinα+cosα)2-1/cotα-sinαcosα的值

问题描述:

1+tanα/1-tanα=3+2√2,求(sinα+cosα)2-1/cotα-sinαcosα的值

(1-tanα)/(1+tanα)=3+2√2 (1-tanα)/(1+tanα)=2+2√2+1=sinα/[cosα*(cosα)^2]=tanα*[1+(tanα)^2]=-26/27,所以(

由 (1+tanα)/(1-tanα)=3+2√2 可得:
tanα=(2+2√2)/(4+2√2)=√2/2
所以:
[(sinα+cosα)²-1]/(cotα-sinαcosα)
=(sin²α+cos²α+2sinαcosα-1)/(cotα-sinαcosα)
=2sinαcosα/(cotα-sinαcosα)
=2sin²αcosα/(sinαcotα-sin²αcosα)
=2sin²αcosα/(cosα-sin²αcosα)
=2sin²α/(1-sin²α)
=2sin²α/cos²α
=2tan²α
=2(√2/2)²
=1