已知tanθ=1/2,则sin2θ+sinθ^2=

问题描述:

已知tanθ=1/2,则sin2θ+sinθ^2=

(sinθ)^2+sin2θ
=[(sinθ)^2+2sinθcosθ]
=[(sinθ)^2+2sinθcosθ] /(sin^2 θ+cos^2θ) (上下同除以cos^2 θ)
=((tanθ)^2+2tanθ)/(1+tan^2 θ)
=(1/4+1)/(1+1/4)
=1