设数列{an}是以2为首项,1为公差的等差数列, {bn}是以1为首项,2为公比的等比数列,则ab1+ab2+...+ab10=?

问题描述:

设数列{an}是以2为首项,1为公差的等差数列, {bn}是以1为首项,2为公比的等比数列,则ab1+ab2+...+ab10=?
ab1中b1为项数,跟n一样拉THX
答案是2057...T T

a(n)= 2+(n-1)*1 =n +1b(n) =1 *2^(n-1) =2^(n-1)依题意有:M(n) =a(1) +a(2) +a(4) + .a(2^(n-1)) =(1 +1) +(2+1) +..(2^(n-1) +1) (共n项) = (1 +2 +.+2^(n-1)) +(1+1+.+1) (共有n个1) =(2^n -1) +n =2^n + n -1 M...我也算到是1033,但是答案是2057...答案有问题啊!Really???那谢啦OK