(1+1/97)+(2+2/97)+(3+3/97)+…+(96+96/97)+(97+97/97).
问题描述:
(1+
)+(2+1 97
)+(3+2 97
)+…+(96+3 97
)+(97+96 97
). 97 97
答
(1+
)+(2+1 97
)+(3+2 97
)+…+(96+3 97
)+(97+96 97
),97 97
=1+2+3+…+96+97+(
+1 97
+2 97
+…+3 97
+96 97
),97 97
=(1+97)×97÷2+[(1+97)×97÷2×
],1 97
=4753+[4753×
],1 97
=4753+49,
=4802.