定义在R上的函数y=f(x)满足条件f(x+3/2)=-f(x),且函数y=f(x-3/4)为奇函数,为什么答案说它是偶函数?
问题描述:
定义在R上的函数y=f(x)满足条件f(x+3/2)=-f(x),且函数y=f(x-3/4)为奇函数,为什么答案说它是偶函数?
麻烦说详细些,答案看不懂...
答
你设F(x)=f(x-3/4)
这是一个奇函数吧?
所以有Fx+F-x=0
得到f(x-3/4)+f(-x-3/4)=0
上面那个式子里的x你用x+3/4代换一下
得到:f(x)+f(-x-3/2)=0
和f(x+3/2)=-f(x)联立
得到f(-x-3/2)=f(x+3/2)
这不就得到它是一个偶函数了吗?