满足方程y^4+2x^4+1=4x^2*y的整数x,y有多少对?
问题描述:
满足方程y^4+2x^4+1=4x^2*y的整数x,y有多少对?
答
y^4+2x^4+1=4x^2y
y^4-2y^2+1+2(x^4-2x^2y+y^2)=0
(y^2-1)+(x^2-y)=0
y^2=1,x^2=y
y1=1,y2=-1,(当y=-1时,x^2-y不能等于0,所以,舍去)
x1=1,x2=-1
所以,实数对为(1,1),(-1,1)