已知二次方程(ab-2b)x²+2(b-a)x+2a-ab=0有两个相等的实数根,则这个实根是

问题描述:

已知二次方程(ab-2b)x²+2(b-a)x+2a-ab=0有两个相等的实数根,则这个实根是
A-1 B1 C0 D-2

由题意可知:4(B-A)²-4(AB-2B)(2A-AB)=0
(A+B)²-2AB(A+B)+A²B²=0
(A+B-AB)²=0
∴A+B-AB=0
A+B=AB
x1+x2=-2(B-A)/(AB-2B)=-2(B-A)/(A+B-2B)=2
x1x2=(2A-AB)/(AB-2B)=(2A-A-B)/(A+B-2B)=1
故解得到x1=x2=1
选择B1