过圆x^2+y^2=r^2外一点M(a,b)作圆的割线,求所得弦中点的轨迹方程

问题描述:

过圆x^2+y^2=r^2外一点M(a,b)作圆的割线,求所得弦中点的轨迹方程

AB中点P(x,y)
xA+xB=2x
yA+yB=2y
(xA)^2+(yA)^2=r^2.(1)
(xB)^2+(yB)=4y^2.(2)
(1)-(2):
(xA+xB)*(xA-xB)+(yA+yB)*(yA-yB)=0
(xA+xB) +( yA+yB)*(yA-yB)/(xA-xB)=0
k(AB)=(yA-yB)/(xA-xB)=(y-b)/(x-a)
2x+2y*(y-b)/(x-a)=0
AB中点的轨迹方程是圆:x^2+y^2-ax-by=0(xB)^2+(yB)=4y^2......(2)什么意思?设AB中点P(x,y) 因为直线PM与直线AB是同一条直线,所以斜率 k(AB)=k(PM)=(y-b)/(x-a) 又过中点P的半径垂直于弦AB,所以k(OP)k(PM)=-1 --->y/x*(y-b)/(x-a)=-1 --->y(y-b)=-x(x-a) --->x^2+y^2-ax-by=0 --->(x-a/2)^2+(y-b/2)^2=(a^2+b^2)/4