若(x^2+1)(x-3)^9=a0+a1(x-2)+a2(x-2)^2+a3(x-2)^3……+a11(x-2)^11; 则a1+a2+a3+……+a11=?
问题描述:
若(x^2+1)(x-3)^9=a0+a1(x-2)+a2(x-2)^2+a3(x-2)^3……+a11(x-2)^11; 则a1+a2+a3+……+a11=?
若(x^2+1)(x-3)^9=a0+a1(x-2)+a2(x-2)^2+a3(x-2)^3……+a11(x-2)^11;
则a1+a2+a3+……+a11=?(答案是5,
答
令x = 2,得a0(2^2+1)*(2-3)^9=-5
令x = 3,得,a0+a1+……+a11=(3^2+1)*(3-3)^9=0
两式相减,得a1+a2+……+a11=0-(-5)=5