37. 设函数 f (x)是定义在区间(-∞ ,+∞ )上以2为周期的函数,对k∈ Z, 用Ik表示区
问题描述:
37. 设函数 f (x)是定义在区间(-∞ ,+∞ )上以2为周期的函数,对k∈ Z, 用Ik表示区
37. 设函数 f (x)是定义在区间(-∞ ,+∞ )上以2为周期的函数,对k∈ Z, 用Ik表示区间( 2k-1, 2k+1) ,已知当x∈ I0时f(x)=x2. (1)求f (x)在Ik上的解析式;(2)对自然数k,求集合Mk={a│使方程f (x)=ax在Ik 上有两个不相等的实根}.
答
(1)设x∈( 2k-1,2k+1),则(x-2k)∈(-1,1)=l0
∵f (x)是以2为周期的函数
∴f(x)=f(x-2k)
又当x∈ I0时f(x)= x²
∴f (x)在Ik上的解析式为f (x)=f(x-2k)=(x-2k)²
(2)f(x)=(x-2k)²=ax
整理得x²-(4k+a)x+4k²=0,方程有两根
∴Δ=[-(4k+a)]²-4×4k²>0,整理得
a(a+8k)>0
解得a>0或者a<-8k
∴Mk={a|a>0或者a<-8k}