设等差数列{an}的前n项的和为Sn,若a1>0,S4=S8,则当Sn取得最大值时,n的值为(  ) A.5 B.6 C.7 D.8

问题描述:

设等差数列{an}的前n项的和为Sn,若a1>0,S4=S8,则当Sn取得最大值时,n的值为(  )
A. 5
B. 6
C. 7
D. 8

由S4=S8得:
4a1+

4×3
2
d=8a1+
8×7
2
d,
解得:a1=-
11
2
d,又a1>0,得到d<0,
所以Sn=na1+
n(n−1)
2
d=
d
2
n2+(a1-
d
2
)n,
由d<0,得到Sn是一个关于n的开口向下抛物线,且S4=S8
由二次函数的对称性可知,当n=
4+8
2
=6时,Sn取得最大值.
故选B.