设函数f(x)=6x^3+3(a+2)x^2+2ax,若f(x)的两个极值为x1,x2,且x1x2=1,求实数a的值.
问题描述:
设函数f(x)=6x^3+3(a+2)x^2+2ax,若f(x)的两个极值为x1,x2,且x1x2=1,求实数a的值.
答
f(x)=6x^3+3(a+2)x^2+2axf'(x)=18x²+6(a+2)x+2a令f'(x)=0得18x²+6(a+2)x+2a=09x²+3(a+2)x+a=0△=9(a+2)²-36a =9a²-36a+36-36a=9a²+36>0x1*x2=a/9=1得 a=9