非零列向量与非零行向量的乘积为非零矩阵么?不太好理解

问题描述:

非零列向量与非零行向量的乘积为非零矩阵么?不太好理解
下面是一个证明题,用到我提问的那句,我不理解,
证明R(A)1的充分必要条件是存在非零列向量a及非零行向量bT 使AabT
证明 必要性 由R(A)1知A的标准形为

即存在可逆矩阵P和Q 使
 或 
令  bT(1 0  0)Q1 则a是非零列向量 bT是非零行向量 且AabT
充分性 因为a与bT是都是非零向量 所以A是非零矩阵 从而R(A)1
因为
1R(A)R(abT)min{R(a) R(bT)}min{1 1}1
所以R(A)1
貌似答案不是很清楚,有些东西复制不过来,大家可以看看 百度文库里 线性代数同济四版 第三章18题的答案(在文库第54页左右)麻烦了

非零列向量与非零行向量的乘积为非零矩阵么?是的!(a1,a2,……,an)′×(b1,b2,……,bm)=a1b1 a1b2 …… a1bma2b1 a2b2 …… a2bm^…………………………anb1 anb2 …… anbm列向量(a1,a2,……,an)′≠0.必有ak...