已知四边形ABCD为平行四边形,F为DC的中点,AF交对角线BD于点E,试用向量的方法证明:E是DB的三等分点.

问题描述:

已知四边形ABCD为平行四边形,F为DC的中点,AF交对角线BD于点E,试用向量的方法证明:E是DB的三等分点.

我实在不懂什么叫做向量法 我用相似证明可以吗?因为AB平行于cd 所以角abd=角cdb 所以abe相似于三角形fde 因为ab:df=2:1 所以be:de=2:1 所以e是db的三等分点