△ABC三边长为a,b,c,对应角为A,B,C,已知2CA•CB=c2−(a−b)2,则C=_.
问题描述:
△ABC三边长为a,b,c,对应角为A,B,C,已知2
•CA
=c2−(a−b)2,则C=______. CB
答
由余弦定理得:c2=a2+b2-2abcosC①,由向量积的运算法则得:2CA•CB=2|CA|•|CB|cosC=2abcosC=c2-(a-b)2②,把①代入②得:2abcosC=2ab-2abcosC,化简得:2ab(1-2cosC)=0,由ab≠0,解得cosC=12,因为C∈(0,18...